Penetrable-square-well fluids: analytical study and Monte Carlo simulations.
نویسندگان
چکیده
We study structural and thermophysical properties of a one-dimensional classical fluid made of penetrable spheres interacting via an attractive square-well potential. Penetrability of the spheres is enforced by reducing from infinite to finite the repulsive energy barrier in the pair potentials As a consequence, an exact analytical solution is lacking even in one dimension. Building upon previous exact analytical work in the low-density limit [A. Santos, R. Fantoni, and A. Giacometti, Phys. Rev. E 77, 051206 (2008)], we propose an approximate theory valid at any density and in the low-penetrable regime. By comparison with specialized Monte Carlo simulations and integral equation theories, we assess the regime of validity of the theory. We investigate the degree of inconsistency among the various routes to thermodynamics and explore the possibility of a fluid-fluid transition. Finally we locate the dependence of the Fisher-Widom line on the degree of penetrability. Our results constitute the first systematic study of penetrable spheres with attractions as a prototype model for soft systems.
منابع مشابه
A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model.
The one-dimensional penetrable-square-well fluid is studied using both analytical tools and specialized Monte Carlo simulations. The model consists of a penetrable core characterized by a finite repulsive energy combined with a short-range attractive well. This is a many-body one-dimensional problem, lacking an exact analytical solution, for which the usual van Hove theorem on the absence of ph...
متن کاملSquare-well chain molecules: a semi-empirical equation of state and Monte Carlo simulation data
A semi-empirical equation of state was developed for square-well chain fluids on the basis of Monte Carlo (MC) simulation data. The equation was formed by combining terms describing non-bonded square-well segments, hard-sphere chain formation, and a perturbation term describing the square-well contribution to chain formation. The functional dependence on the chain length is the same as that der...
متن کاملPhase Behavior of the Restricted Primitive Model and Square-Well Fluids from Monte Carlo Simulations in the Grand Canonical Ensemble
Coexistence curves of square-well fluids with variable interaction width and of the restricted primitive model for ionic solutions have been investigated by means of grand canonical Monte Carlo simulations aided by histogram reweighting and multicanonical sampling techniques. It is demonstrated that this approach results in efficient data collection. The shape of the coexistence curve of the sq...
متن کاملExpanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers
A novel formalism is presented for simulation of polymers in expanded grand canonical and expanded Gibbs ensembles. Molecular creation and destruction attempts are replaced by transition attempts between states of a tagged chain of variable length. Results are presented for expanded grand canonical simulations of hard-core chain fluids in the bulk and in a slit pore and for expanded Gibbs ensem...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 131 12 شماره
صفحات -
تاریخ انتشار 2009